Laser acceleration of monoenergetic protons from ultra-thin foils in the Directed Coulomb Explosion regime.

S. S. Bulanov, V. Chvykov, G. Kalinchenko, T. Matsuoka, P. Rousseau, S. Reed, V. Yanovsky, D. W. Litzenberg, K. Krushelnick and A. Maksimchuk

Coulomb Explosion of a double layer target (principal scheme - animation)

- Heavy ions are ionized by the laser pulse
- Electrons are expelled from the target by the laser pulse
- Light ions are accelerated in the charge separation field
- Heavy ion layer explodes due to the Coulomb repulsion of excess positive charge

ELECTROSTATIC FIELD

HEAVY IONS

LIGHT IONS

Parameters of simulation
Simulation box: 20 λ x 10 λ
Grid mesh size: λ/200
Laser pulse: 500 TW
Linearly polarized (z)
Focused: f/D=1.5
Foil: first layer Al+13, electron density 400 n\textsubscript{0}, second layer H+, electron density 30 n\textsubscript{0}

Directed Coulomb Explosion of a double layer target (2D particle-in-cell simulation results)

Accelerating Field

Longitudinal electric field

Spectrum

Ion density

protons

Aluminum ions

Center for the Advancement of Frontiers in Optical Coherent and Ultrafast Science
The University of Michigan and the University of Texas at Austin
NSF Award 0114336