Generation of radially polarized THz pulses via velocity mismatched optical rectification

Guoqing Chang¹, Charles J. Divin¹, Chi-Hung Liu¹, Steven L. Williamson², Almantas Galvanauskas¹, and Theodore B. Norris¹

¹FOCUS Center and Center for Ultrafast Optical Science, the University of Michigan, ²Picometrix LLC, 2925 Boardwalk, Ann Arbor, Michigan

Fig. 1 Experimental setup. PCF: hollow core photonic crystal fiber, HWP: half wave plate. The Yb fiber amplifier amplifies the fs pulse train from the oscillator using parabolic pulse amplification technique. The amplified 1um pulses are compressed down to <200 fs and then focused onto a ZnTe crystal for THz Generation via optical rectification.

Fig. 2 THz single cycle waveforms obtained by translating the THz receiver to scan the THz beam profiles. (a) radially polarized THz beam from (001) cut ZnTe; (b) linearly polarized THz beam from (110) cut ZnTe. Insets represent the typical spectra for each case.